亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高三數學知識梳理(20篇)

時間:2024-12-05 17:07:00   來源:無憂考網     [字體: ]
【#高三# #高三數學知識梳理(20篇)#】踏入高三這一關鍵戰場,數學這座巍峨高山橫亙眼前,別慌!©無憂考網為大家精心整理了20篇高三數學知識點,每一篇皆條理清晰、深入淺出,搭配經典例題,助你吃透知識點,從夯實根基到攻克難題,穩步攀向數學高分峰巔,開啟逆襲征程!

1.高三數學知識梳理 篇一

 直線與平面垂直

  定義:直線與平面內任意一條直線都垂直

  判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直

  性質:垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

  直線和平面所成的角:(0,90)度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規定垂直90度,在平面內或者平行0度

2.高三數學知識梳理 篇二

  平面與平面平行

  定義:兩個平面沒有公共點

  判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行

  性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

3.高三數學知識梳理 篇三

  異面直線:

  平面外一點A與平面一點B的連線和平面內不經過點B的直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個平面內。

  求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

4.高三數學知識梳理 篇四

  空間點、直線、平面之間的位置關系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內,最易忽視);

  平面與平面—平行、相交。

5.高三數學知識梳理 篇五

  平面的基本性質:

  公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;

  公理2過不在一條直線上的三點,有且只有一個平面;

  公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

6.高三數學知識梳理 篇六

  求動點的軌跡方程的基本方法:

  直接法、定義法、相關點法、參數法、交軌法等。

  1、直接法:

  如果動點運動的條件就是一些幾何量的等量關系,這些條件簡單明確,不需要特殊的技巧,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法;

  用直接法求動點軌跡一般有建系,設點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。

  2、定義法:

  利用所學過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動點的軌跡方程,高考生物,這種方法叫做定義法.這種方法要求題設中有定點與定直線及兩定點距離之和或差為定值的條件,或利用平面幾何知識分析得出這些條件。定義法的關鍵是條件的轉化??轉化成某一基本軌跡的定義條件;

  3、相關點法:

  動點所滿足的條件不易表述或求出,但形成軌跡的動點P(x,y)卻隨另一動點Q(x′,y′)的運動而有規律的運動,且動點Q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關點法。一般地:定比分點問題,對稱問題或能轉化為這兩類的軌跡問題,都可用相關點法。

  4、參數法:

  求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關系,則可借助中間變量(參數),使x,y之間建立起聯系,然而再從所求式子中消去參數,得出動點的軌跡方程。用什么變量為參數,要看動點隨什么量的變化而變化,常見的參數有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據方程的觀點,引入n個參數,需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數可減少)。

  5、交軌法:

  求兩動曲線交點軌跡時,可由方程直接消去參數,例如求兩動直線的交點時常用此法,也可以引入參數來建立這些動曲線的聯系,然而消去參數得到軌跡方程。可以說是參數法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數,得到交點的兩個坐標間的關系即可。交軌法實際上是參數法中的一種特殊情況。

7.高三數學知識梳理 篇七

  1.全稱命題真假的判斷方法

  (1)要判斷一個全稱命題是真命題,必須對限定的集合M中的每一個元素x,證明p(x)成立;

  (2)要判斷一個全稱命題是假命題,只要能舉出集合M中的一個特殊值x=x0,使p(x0)不成立即可.

  2.特稱命題真假的判斷方法

  要判斷一個特稱命題是真命題,只要在限定的集合M中,找到一個x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.

8.高三數學知識梳理 篇八

  1.邏輯聯結詞與集合的關系

  或、且、非三個邏輯聯結詞,對應著集合運算中的并、交、補,因此,常常借助集合的并、交、補的意義來解答由或、且、非三個聯結詞構成的命題問題.

  2.正確區別命題的否定與否命題

  否命題是對原命題若p,則q的條件和結論分別加以否定而得到的命題,它既否定其條件,又否定其結論;命題的否定即非p,只是否定命題p的結論.命題的否定與原命題的真假總是對立的,即兩者中有且只有一個為真,而原命題與否命題的真假無必然聯系.

9.高三數學知識梳理 篇九

  1.全稱量詞與全稱命題

  (1)短語所有的任意一個在邏輯中通常叫做全稱量詞,并用符號表示.

  (2)含有全稱量詞的命題,叫做全稱命題.

  (3)全稱命題對M中任意一個x,有p(x)成立可用符號簡記為xM,p(x),讀作對任意x屬于M,有p(x)成立.

  2.存在量詞與特稱命題

  (1)短語存在一個至少有一個在邏輯中通常叫做存在量詞,并用符號表示.

  (2)含有存在量詞的命題,叫做特稱命題.

  (3)特稱命題存在M中的一個x0,使p(x0)成立可用符號簡記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.

10.高三數學知識梳理 篇十

  簡單的邏輯聯結詞

  1.用聯結詞且聯結命題p和命題q,記作pq,讀作p且q.

  2.用聯結詞或聯結命題p和命題q,記作pq,讀作p或q.

  3.對一個命題p全盤否定,就得到一個新命題,記作綈p,讀作非p或p的否定.

  4.命題pq,pq,綈p的真假判斷:

  pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.

11.高三數學知識梳理 篇十一

  對數函數性質

  定義域求解:對數函數y=logax的定義域是{x丨x>0},但如果遇到對數型復合函數的定義域的求解,除了要注意大于0以外,還應注意底數大于0且不等于1,如求函數y=logx(2x-1)的定義域,需同時滿足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定義域為{x丨x>1/2且x≠1}

  值域:實數集R,顯然對數函數無/界。

  定點:函數圖像恒過定點(1,0)。

  單調性:a>1時,在定義域上為單調增函數;

  奇偶性:非奇非偶函數

  周期性:不是周期函數

  對稱性:無

  最值:無

  零點:x=1

  注意:負數和0沒有對數。

12.高三數學知識梳理 篇十二

  判斷函數值域的方法

  1、配方法:利用二次函數的配方法求值域,需注意自變量的取值范圍。

  2、換元法:常用代數或三角代換法,把所給函數代換成值域容易確定的另一函數,從而得到原函數值域,如y=ax+b+_√cx-d(a,b,c,d均為常數且ac不等于0)的函數常用此法求解。

  3、判別式法:若函數為分式結構,且分母中含有未知數x?,則常用此法。通常去掉分母轉化為一元二次方程,再由判別式△≥0,確定y的'范圍,即原函數的值域

  4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數值域時,要時刻注意不等式成立的條件,即“一正,二定,三相等”。

  5、反函數法:若原函數的值域不易直接求解,則可以考慮其反函數的定義域,根據互為反函數的兩個函數定義域與值域互換的特點,確定原函數的值域,如y=cx+d/ax+b(a≠0)型函數的值域,可采用反函數法,也可用分離常數法。

  6、單調性法:首先確定函數的定義域,然后在根據其單調性求函數值域,常用到函數y=x+p/x(p>0)的單調性:增區間為(-∞,-√p)的左開右閉區間和(√p,+∞)的左閉右開區間,減區間為(-√p,0)和(0,√p)

  7、數形結合法:分析函數解析式表達的集合意義,根據其圖像特點確定值域。

13.高三數學知識梳理 篇十三

  二次函數的零點:

  1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

  2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.

14.高三數學知識梳理 篇十四

  1.等差數列的定義

  如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d。

15.高三數學知識梳理 篇十五

  簡單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。

16.高三數學知識梳理 篇十六

  復數相等特別提醒:

  一般地,兩個復數只能說相等或不相等,而不能比較大小。如果兩個復數都是實數,就可以比較大小,也只有當兩個復數全是實數時才能比較大小。

  解復數相等問題的方法步驟:

  (1)把給的復數化成復數的標準形式;

  (2)根據復數相等的充要條件解之。

17.高三數學知識梳理 篇十七

  數列的分類

  (1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

  (2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

18.高三數學知識梳理 篇十八

  數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

  (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  (2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  (4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

19.高三數學知識梳理 篇十九

  分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪

20.高三數學知識梳理 篇二十

  向量的三角形不等式

  (1)∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

  ①當且僅當a、b反向時,左邊取等號;

  ②當且僅當a、b同向時,右邊取等號。

  (2)∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

  ①當且僅當a、b同向時,左邊取等號;

  ②當且僅當a、b反向時,右邊取等號。