亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高二年級上冊數學知識點總結

時間:2022-07-22 11:38:00   來源:無憂考網     [字體: ]

【#高二# #高二年級上冊數學知識點總結#】高二變化的大背景,便是文理分科(或七選三)。在對各個學科都有了初步了解后,學生們需要對自己未來的發展科目有所選擇、有所側重。這可謂是學生們第完全自己把握、風險未知的主動選擇。®無憂考網高二頻道為你整理了《高二年級上冊數學知識點總結》,助你金榜題名!

1.高二年級上冊數學知識點總結


  1、幾何概型的定義:如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。

  2、幾何概型的概率公式:P(A)=構成事件A的區域長度(面積或體積);試驗的全部結果所構成的區域長度(面積或體積)

  3、幾何概型的特點:

  1)試驗中所有可能出現的結果(基本事件)有無限多個;

  2)每個基本事件出現的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無限多個結果,且與事件的區域長度(或面積、體積等)有關,即試驗結果具有無限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

2.高二年級上冊數學知識點總結

  已知函數有零點(方程有根)求參數取值常用的方法

  1、直接法:

  直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解。

3.高二年級上冊數學知識點總結

  1.兩角和與差的正弦、余弦和正切公式:

  重點:通過探索和討論交流,導出兩角差與和的三角函數的十一個公式,并了解它們的內在聯系。

  難點:兩角差的余弦公式的探索和證明。

  2.簡單的三角恒等變換:

  重點:掌握三角變換的內容、思路和方法,體會三角變換的特點。

  難點:公式的靈活應用。

  三角函數幾點說明:

  1.對弧長公式只要求了解,會進行簡單應用,不必在應用方面加深。

  2.用同角三角函數基本關系證明三角恒等式和求值計算,熟練配角和sin和cos的計算。

  3.已知三角函數值求角問題,達到課本要求即可,不必拓展。

  4.熟練掌握函數y=Asin(wx+j)圖象、單調區間、對稱軸、對稱點、特殊點和值。

  5.積化和差、和差化積、半角公式只作為練習,不要求記憶。

  6.兩角和與差的正弦、余弦和正切公式。

4.高二年級上冊數學知識點總結


  一、隨機事件

  (1)事件的三種運算:并(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

  (2)四種運算律:交換律、結合律、分配律、德莫根律。

  (3)事件的五種關系:包含、相等、互斥(互不相容)、對立、相互獨立。

  二、概率定義

  (1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;

  (2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;

  (3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

  (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

  三、概率性質與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式。

  (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。當一個問題可以看成n重貝努力試驗(三個條件:n次重復,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式。

5.高二年級上冊數學知識點總結


  1.任意角

  (1)角的分類:

  ①按旋轉方向不同分為正角、負角、零角。

  ②按終邊位置不同分為象限角和軸線角。

  (2)終邊相同的角:

  終邊與角相同的角可寫成+k360(kZ)。

  (3)弧度制:

  ①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。

  ②規定:正角的弧度數為正數,負角的弧度數為負數,零角的弧度數為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。

  ③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關,僅與角的大小有關。

  ④弧度與角度的換算:360弧度;180弧度。

  ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的三角函數

  (1)任意角的三角函數定義:

  設是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數。

  (2)三角函數在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦。

  3.三角函數線

  設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M。由三角函數的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。