1.高三下冊數學必修三知識點
1.導數的意義:
曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產量為自變量的函數的導數,C為常數)
2.多項式函數的導數與函數的單調性
在一個區間上(個別點取等號)在此區間上為增函數.
在一個區間上(個別點取等號)在此區間上為減函數.
3.導數與極值、導數與最值:
(1)函數處有且“左正右負”在處取極大值;
函數在處有且左負右正”在處取極小值.
注意:
①在處有是函數在處取極值的必要非充分條件.
②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值.特別是給出函數極大(小)值的條件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒有用完,這一點一定要切記.
③單調性與最值(極值)的研究要注意列表!
(2)函數在一閉區間上的值是此函數在此區間上的極大值與其端點值中的“值”
函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的“最小值”;
注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點,然后比較定義域的端點值和導數為0的點對應函數值的大小,其中的就是值,最小就為最小。
2.高三下冊數學必修三知識點
(一)導數第一定義
設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義
(二)導數第二定義
設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義
(三)導函數與導數
如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對于區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。
(四)單調性及其應用
1.利用導數研究多項式函數單調性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數
2.用導數求多項式函數單調區間的一般步驟
(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間
3.高三下冊數學必修三知識點
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.
(5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,
由公式寫出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.
再強調對于數列通項公式的理解注意以下幾點:
(1)數列的通項公式實際上是一個以正整數集N_或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.
(3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.
(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:
(5)有些數列,只給出它的前幾項,并沒有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不.
4.高三下冊數學必修三知識點
一、函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數法;
4、函數方程法;
5、參數法;
6、配方法
三、函數的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調性法;
7、直接法
四、函數的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調性法
五、函數單調性的常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。
2、若f(x)為增(減)函數,則-f(x)為減(增)函數。
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
5.高三下冊數學必修三知識點
一.隨機事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;對于給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。
(6)頻率與概率的區別與聯系:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率
二.概率的基本性質
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質:
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區別與聯系,互斥事件是指事件A與事件B在一次試驗中不會同時發生,其具體包括三種不同的情形:
(1)事件A發生且事件B不發生;
(2)事件A不發生且事件B發生;
(3)事件A與事件B同時不發生,而對立事件是指事件A與事件B有且僅有一個發生,其包括兩種情形;
(1)事件A發生B不發生;
(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形。