【#小學奧數# #小學奧數關于數論知識點的總結#】數論是純粹數學的分支之一,主要研究整數的性質。整數可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關系,并且用有理數來逼近實數(丟番圖逼近)。以下是©無憂考網整理的相關資料,希望對您有所幫助。
1. 奇偶性問題
奇+奇=偶 奇×奇=奇
奇+偶=奇 奇×偶=偶
偶+偶=偶 偶×偶=偶
2. 位值原則
形如:abc =100a+10b+c
3. 數的整除特征:
整除數特征
2 末尾是0、2、4、6、8
3 各數位上數字的和是3的倍數
5 末尾是0或5
9 各數位上數字的和是9的倍數
11 奇數位上數字的和與偶數位上數字的和,兩者之差是11的倍數
4和25 末兩位數是4(或25)的倍數
8和125 末三位數是8(或125)的倍數
7、11、13 末三位數與前幾位數的差是7(或11或13)的倍數
4. 整除性質
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a個連續自然數中必恰有一個數能被a整除。
5. 帶余除法
一般地,如果a是整數,b是整數(b≠0),那么一定有另外兩個整數q和r,0≤r
當r=0時,我們稱a能被b整除。
當r≠0時,我們稱a不能被b整除,r為a除以b的余數,q為a除以b的不完全商(亦簡稱為商)。用帶余數除式又可以表示為a÷b=q……r, 0≤r
分解定理
完全平方數性質
①平方差: A -B =(A+B)(A-B),其中我們還得注意A+B, A-B同奇偶性。
②約數:約數個數為奇數個的是完全平方數。
約數個數為3的是質數的平方。
③質因數分解:把數字分解,使他滿足積是平方數。
④平方和。
孫子定理(中國剩余定理)
輾轉相除法
數論解題的常用方法:
枚舉、歸納、反證、構造、配對、估計
相關推薦:
【篇一】
1. 奇偶性問題
奇+奇=偶 奇×奇=奇
奇+偶=奇 奇×偶=偶
偶+偶=偶 偶×偶=偶
2. 位值原則
形如:abc =100a+10b+c
3. 數的整除特征:
整除數特征
2 末尾是0、2、4、6、8
3 各數位上數字的和是3的倍數
5 末尾是0或5
9 各數位上數字的和是9的倍數
11 奇數位上數字的和與偶數位上數字的和,兩者之差是11的倍數
4和25 末兩位數是4(或25)的倍數
8和125 末三位數是8(或125)的倍數
7、11、13 末三位數與前幾位數的差是7(或11或13)的倍數
4. 整除性質
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a個連續自然數中必恰有一個數能被a整除。
5. 帶余除法
一般地,如果a是整數,b是整數(b≠0),那么一定有另外兩個整數q和r,0≤r
當r=0時,我們稱a能被b整除。
當r≠0時,我們稱a不能被b整除,r為a除以b的余數,q為a除以b的不完全商(亦簡稱為商)。用帶余數除式又可以表示為a÷b=q……r, 0≤r
【篇二】
分解定理
任何一個大于1的自然數n都可以寫成質數的連乘積,即
n= p1 × p2 ×...×pk
約數個數與約數和定理
設自然數n的質因子分解式如n= p1 × p2 ×...×pk 那么:
n的約數個數:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有約數和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
同余定理
① 同余定義:若兩個整數a,b被自然數m除有相同的余數,那么稱a,b對于模m同余,用式子表示為a≡b(mod m)
②若兩個數a,b除以同一個數c得到的余數相同,則a,b的差一定能被c整除。
③兩數的和除以m的余數等于這兩個數分別除以m的余數和。
④兩數的差除以m的余數等于這兩個數分別除以m的余數差。
⑤兩數的積除以m的余數等于這兩個數分別除以m的余數積。
【篇三】
完全平方數性質
①平方差: A -B =(A+B)(A-B),其中我們還得注意A+B, A-B同奇偶性。
②約數:約數個數為奇數個的是完全平方數。
約數個數為3的是質數的平方。
③質因數分解:把數字分解,使他滿足積是平方數。
④平方和。
孫子定理(中國剩余定理)
輾轉相除法
數論解題的常用方法:
枚舉、歸納、反證、構造、配對、估計
相關推薦: