亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高一必修四數學知識點

時間:2024-04-25 14:55:00   來源:無憂考網     [字體: ]
【#高一# #高一必修四數學知識點#】高一必修四數學知識點是®無憂考網為大家整理的,高一階段,是打基礎階段,是將來決戰高考取勝的關鍵階段,盡早進入角色,安排好自己的學習和生活,會起到事半功倍的效果。

1.高一必修四數學知識點 篇一


  函數的周期性

  (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

2.高一必修四數學知識點 篇二


  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

3.高一必修四數學知識點 篇三


  旋轉體的結構特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉一周得到.

  (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到.

  (3)圓臺可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

4.高一必修四數學知識點 篇四


  二面角

  (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

  (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

5.高一必修四數學知識點 篇五


  集合的概念

  集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)”。理解這句話,應該把握4個關鍵詞:對象、確定的、不同的、整體。

  對象――即集合中的元素。集合是由它的元素確定的。

  整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。

  確定的――集合元素的確定性――元素與集合的“從屬”關系。

  不同的――集合元素的互異性。

6.高一必修四數學知識點 篇六


  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。

  棱錐的的性質:

  (1)側棱交于一點。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

7.高一必修四數學知識點 篇七


  1、拋物線是軸對稱圖形。對稱軸為直線

  x=—b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標為

  P(—b/2a,(4ac—b’2)/4a)

  當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

  3、二次項系數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數b和二次項系數a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5、常數項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數

  Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

  Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

  Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

8.高一必修四數學知識點 篇八


  求函數值域的方法

  ①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;

  ②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

  ③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

  ④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

  ⑤單調性法:利用函數的單調性求值域;

  ⑥圖象法:二次函數必畫草圖求其值域;

  ⑦利用對號函數

  ⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數

9.高一必修四數學知識點 篇九


  多面體的結構特征

  (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

  (2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

  (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

10.高一必修四數學知識點 篇十


  函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域.

  (2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

  (3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得.

  (4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域.

  (8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域.