亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高一年級數學下學期知識點歸納

時間:2023-12-25 13:41:00   來源:無憂考網     [字體: ]

【#高一# #高一年級數學下學期知識點歸納#】高一年級數學下學期知識點歸納是®無憂考網為大家整理的,在平時的學習中,說到知識點,大家是不是都習慣性的重視?知識點就是學習的重點。

1.高一年級數學下學期知識點歸納 篇一

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α<180°。

  理解:

  (1)注意“兩個方向”:直線向上的方向、x軸的`正方向;

  (2)規定當直線和x軸平行或重合時,它的傾斜角為0度。

  意義:

  ①直線的傾斜角,體現了直線對x軸正向的傾斜程度;

  ②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;

  ③傾斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時α∈(0°,90°)

  k<0時α∈(90°,180°)

  k=0時α=0°

  當α=90°時k不存在

  ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,

  A=arctan(-a/b)

  當a≠0時,傾斜角為90度,即與X軸垂直

2.高一年級數學下學期知識點歸納 篇二

  空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

  (1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變為原來的一半。

  (2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

3.高一年級數學下學期知識點歸納 篇三

  多面體的結構特征

  (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

  (2)棱錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

  (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

4.高一年級數學下學期知識點歸納 篇四

  求函數值域的方法

  ①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;

  ②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

  ③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

  ④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

  ⑤單調性法:利用函數的單調性求值域;

  ⑥圖象法:二次函數必畫草圖求其值域;

  ⑦利用對號函數

  ⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數

5.高一年級數學下學期知識點歸納 篇五

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

  13、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

6.高一年級數學下學期知識點歸納 篇六

  冪函數定義:

  形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

  定義域和值域:

  當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域

7.高一年級數學下學期知識點歸納 篇七

  等比數列求和公式

  (1)等比數列:a(n+1)/an=q(n∈n)。

  (2)通項公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);

  (3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項數)

  (4)性質:

  ①若m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq;

  ②在等比數列中,依次每k項之和仍成等比數列.

  ③若m、n、q∈n,且m+n=2q,則am×an=aq^2

  (5)"g是a、b的等比中項""g^2=ab(g≠0)".

  (6)在等比數列中,首項a1與公比q都不為零.注意:上述公式中an表示等比數列的第n項。

  等比數列求和公式推導:sn=a1+a2+a3+...+an(公比為q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。

8.高一年級數學下學期知識點歸納 篇八

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α與-α的三角函數值之間的關系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

9.高一年級數學下學期知識點歸納 篇九

  集合與元素

  一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

  例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

  班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。

  解集合問題的關鍵

  解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等。

10.高一年級數學下學期知識點歸納 篇十

  方程的根與函數的零點

  函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

  函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

  方程有實數根函數的圖象與軸有交點函數有零點.

  函數零點的求法:

  求函數的零點:

  1(代數法)求方程的實數根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.

  二次函數的零點:

  二次函數.

  △>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.

  △=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.

  △<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.