亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高一下冊數學重點知識點總結

時間:2023-07-06 09:48:00   來源:無憂考網     [字體: ]
【#高一# #高一下冊數學重點知識點總結#】數學雖然是理科,但也需要背誦,除了書上的公式要背,定義、定理也要熟背,因為它是做題的依據。©無憂考網為各位同學整理了《高一下冊數學重點知識點總結》,希望對你的學習有所幫助!

1.高一下冊數學重點知識點總結 篇一


  空間直角坐標系定義:

  過定點O,作三條互相垂直的數軸,它們都以O為原點且一般具有相同的長度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統稱坐標軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規則,即以右手握住z軸,當右手的四指從正向x軸以π/2角度轉向正向y軸時,大拇指的指向就是z軸的正向,這樣的三條坐標軸就組成了一個空間直角坐標系,點O叫做坐標原點。

  1、右手直角坐標系

  ①右手直角坐標系的建立規則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;

  ②已知點的坐標P(x,y,z)作點的方法與步驟(路徑法):

  沿x軸正方向(x>0時)或負方向(x<0時)移動|x|個單位,再沿y軸正方向(y>0時)或負方向(y<0時)移動|y|個單位,最后沿x軸正方向(z>0時)或負方向(z<>

  ③已知點的位置求坐標的方法:

  過P作三個平面分別與x軸、y軸、z軸垂直于A,B,C,點A,B,C在x軸、y軸、z軸的坐標分別是a,b,c則(a,b,c)就是點P的坐標。

  2、在x軸上的點分別可以表示為(a,0,0),(0,b,0),(0,0,c)。

  在坐標平面xOy,xOz,yOz內的點分別可以表示為(a,b,0),(a,0,c),(0,b,c)。

  3、點P(a,b,c)關于x軸的對稱點的坐標為(a,-b,-c);

  點P(a,b,c)關于y軸的對稱點的坐標為(-a,b,-c);

  點P(a,b,c)關于z軸的對稱點的坐標為(-a,-b,c);

  點P(a,b,c)關于坐標平面xOy的對稱點為(a,b,-c);

  點P(a,b,c)關于坐標平面xOz的對稱點為(a,-b,c);

  點P(a,b,c)關于坐標平面yOz的對稱點為(-a,b,c);

  點P(a,b,c)關于原點的對稱點(-a,-b,-c)。

  4、已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則線段PQ的中點坐標為

  5、空間兩點間的距離公式

  已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則兩點的距離為特殊點A(x,y,z)到原點O的距離為

  6、以C(x0,y0,z0)為球心,r為半徑的球面方程為

  特殊地,以原點為球心,r為半徑的球面方程為x2+y2+z2=r2

2.高一下冊數學重點知識點總結 篇二


  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

3.高一下冊數學重點知識點總結 篇三


  二面角

  (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

  (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

4.高一下冊數學重點知識點總結 篇四


  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b’2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。

  3.二次項系數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數b和二次項系數a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數

  Δ=b’2-4ac>0時,拋物線與x軸有2個交點。

  Δ=b’2-4ac=0時,拋物線與x軸有1個交點。

  Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b’2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

5.高一下冊數學重點知識點總結 篇五


  復數定義

  我們把形如a+bi(a,b均為實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等于零時,這個復數可以視為實數;當z的虛部不等于零時,實部等于零時,常稱z為純虛數。復數域是實數域的代數閉包,也即任何復系數多項式在復數域中總有根。

  復數表達式

  虛數是與任何事物沒有聯系的,是絕對的,所以符合的表達式為:

  a=a+ia為實部,i為虛部

  復數運算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結果還是0,也就在數字中沒有復數的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數。

  復數與幾何

  ①幾何形式

  復數z=a+bi被復平面上的點z(a,b)確定。這種形式使復數的問題可以借助圖形來研究。也可反過來用復數的理論解決一些幾何問題。

  ②向量形式

  復數z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數四則運算得到恰當的幾何解釋。

  ③三角形式

  復數z=a+bi化為三角形式