亚洲欧美成人一区二区三区,强伦轩一区二区三区四区播放方式,无码国产精品一区二区免费式直播,国产又黄又爽又湿的免费网站,少妇被弄到高潮喷水A片69网站

高二文科數學上學期知識點

時間:2023-05-17 15:37:00   來源:無憂考網     [字體: ]
【#高二# #高二文科數學上學期知識點#】數學對文理科學生都很重要的一門學科,尤其在文科考試中拉分會很大,©無憂考網為各位同學整理了《高二文科數學上學期知識點》,希望對你的學習有所幫助!

1.高二文科數學上學期知識點 篇一


  系統抽樣

  1.系統抽樣(等距抽樣或機械抽樣):

  把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。

  K(抽樣距離)=N(總體規模)/n(樣本規模)

  前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規則分布。可以在調查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環性規律,且這種循環和抽樣距離重合。

  2.系統抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統抽樣可以大大提高估計精度。

2.高二文科數學上學期知識點 篇二


  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

3.高二文科數學上學期知識點 篇三


  1.定義:

  用符號〉,=,〈號連接的式子叫不等式。

  2.性質:

  ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

  ②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

  ③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

  3.分類:

  ①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

  ②一元一次不等式組:

  a.關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

  b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  4.考點:

  ①解一元一次不等式(組)

  ②根據具體問題中的數量關系列不等式(組)并解決簡單實際問題

  ③用數軸表示一元一次不等式(組)的解集

4.高二文科數學上學期知識點 篇四


  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質可知:底邊c上的高h=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

5.高二文科數學上學期知識點 篇五


  圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規律。

  常見圖像變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯系起來思考)

  平移變換y=f(x)→y=f(x+a),y=f(x)+b

  注意:

  (ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。

  (ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。

  對稱變換y=f(x)→y=f(-x),關于y軸對稱

  y=f(x)→y=-f(x),關于x軸對稱

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。

  一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱